Tecnicas de Aplicacion a tratamientos termicos

¿En que consiste?

¿Que son los tratamientos termoquimicos?

Tratamiento térmico es proceso que comprende el calentamiento de los metales o las aleaciones en estado sólido a temperaturas definidas, manteniéndolas a esa temperatura por suficiente tiempo, seguido de un enfriamiento a las velocidades adecuadas con el fin de mejorar sus propiedades físicas y mecánicas, especialmente la dureza, la resistencia y la elasticidad.

Resultado de imagen para que es tratamientos termicos

El Tratamiento Térmico involucra varios procesos de calentamiento y enfriamiento para efectuar cambios estructurales en un material, los cuales modifican sus propiedades mecánicas.

Orígenes

Los griegos descubrieron hacia el 1000 AC una técnica para endurecer las armas de hierro mediante un tratamiento térmico.
Todas las aleaciones de hierro fabricadas hasta el siglo XIV d.c se clasifican en la actualidad como hierro forjado. Para obtener estas aleaciones, se calentaba en un horno una masa de mineral de hierro y carbón vegetal. Mediante este tratamiento se reducía el mineral a una masa esponjosa de hierro llena de escoria formada por impurezas metálicas y cenizas de carbón vegetal. Esta masa esponjosa se retiraba mientras permanecía incandescente y se golpeaba con pesados martillos para eliminar la escoria y darle una determinada forma.

Tipos de tratamientos térmicos


Temple
La finalidad del temple es aumentar la dureza y la resistencia del acero. Para ello, se calienta el acero a una temperatura ligeramente más elevada que la crítica superior Ac (entre 700-950 °C) y se enfría luego más o menos rápidamente (según características de la pieza) en un medio como agua, aceite, etcétera. Existen distintos tipos de temples, algunos de ellos son:

Temple continuo completo

Se aplica a los aceros hipoeutectoides (contenido de carbono inferior a 0,9%). Se calienta la pieza hasta la temperatura de temple y seguidamente se enfría en el medio adecuado (agua, aceite, sales, aire) con lo que obtendremos como elemento constituyente martensita.

Temple continuo incompleto

Se aplica a los aceros hipereutectoides (contenido de carbono superior a 0,9%). Se calienta la pieza hasta la temperatura indicada, transformándose la perlita en austenita y quedando intacta la cementita. Después de enfriar, la estructura resultante estará formada por martensita y cementita.

Temple escalonado

Consiste en calentar el acero a temperatura adecuada y mantenerlo hasta que se transforme en austenita, seguidamente se enfría con una temperatura uniforme en un baño de sales hasta transformarlo en bainita.

Temple superficial

Se basa en un calentamiento superficial muy rápido de la pieza y un enfriamiento también muy rápido, obteniendo la austenización solo en la capa superficial, quedando el núcleo de la pieza blando y tenaz y la superficie exterior dura y resistente al rozamiento.

Temple por inducción

Es un proceso de endurecimiento de acero en el cual las superficies de las piezas se calientan rápidamente a temperatura de austenitización mediante inducción electromagnética, (con un diseño adecuado del inductor, se puede confinar el calor a áreas pequeñas). Una vez alcanzada la temperatura de austenitización se aplica una ducha de agua fría que produce el temple.

Tipos de tratamientos térmicos

Los tratamientos termoquímicos son tratamientos térmicos en los que, además de los cambios en la estructura del acero, también se producen cambios en la composición química de la capa superficial, añadiendo diferentes productos químicos hasta una profundidad determinada. Estos tratamientos requieren el uso de calentamiento y enfriamiento controlados en atmósferas especiales.

Cementación (C)

La cementación aumenta la dureza superficial de una pieza de acero dulce, aumentando la concentración de carbono en la superficie. Se consigue teniendo en cuenta el medio o atmósfera que envuelve el metal durante el calentamiento y enfriamiento. El tratamiento logra aumentar el contenido de carbono de la zona periférica, obteniéndose después, por medio de temples y revenidos, una gran dureza superficial, resistencia al desgaste y buena tenacidad en el núcleo.

Características de la cementación

  • Endurece la superficie.
  • No afecta al corazón de la pieza.
  • Aumenta el carbono de la superficie.
  • Se coloca la superficie en contacto con polvos de cementar (Productos cementantes.
  • El enfriamiento es lento y se hace necesario un tratamiento térmico posterior.
  • Los engranajes suelen ser piezas que se cementan.


Equipos para cementación

Cajas de cementado: Se cementa con mezcla cementante que rodea a la pieza en un recipiente cerrado, el cual se calienta a la temperatura adecuada durante el tiempo requerido y luego se enfría con lentitud. Este equipo no se presta para alta producción, siendo sus principales ventajas su economía, eficiencia y la no necesidad de una atmósfera preparada. En realidad, el agente cementante, son los gases que esta pasta que rodea al material desprende cuando se calienta en el horno.
Cajas de gas: Es más eficiente que el anterior, los ciclos son más controlados, el calentamiento más uniforme, es más limpio y requiere de menos espacio. 


Nitruración (N)

La nitruración consiste en enriquecer la superficie de la pieza en nitrógeno calentándola en una atmósfera especifica a temperatura comprendida entre 500 y 580 ºC, formándose una capa de muy poca profundidad pero de dureza muy superior a la capa de cementado. Durante el proceso no hay deformaciones y obtenemos una mayor resistencia a la corrosión.
Si en un recinto, un horno de tratamiento térmico, se somete al amoníaco (NH3) a temperaturas de 500° C, se descompone en nitrógeno e hidrógeno. El hidrógeno, más ligero, se separa del nitrógeno por diferencia de densidad. El nitrógeno liberado por la descomposición del amoníaco forma la atmósfera en el interior del horno que, en contacto con la superficie de hierro y a esa temperatura, forma nitruro de hierro, un compuesto de gran dureza pero frágil.
Si bien este tratamiento da gran dureza superficial a la pieza, la velocidad de penetración es muy lenta, aproximadamente 1 mm en 100 horas de tratamiento, pero no necesita de temple posterior.La nitruración se da a piezas sometidas a grandes fuerzas de rozamiento y de carga como, por ejemplo, pistas de rodamientos, camisas de cilindros o piezas similares, que necesitan un núcleo con cierta plasticidad, que absorba golpes y vibraciones, y una superficie de gran dureza contra desgaste y deformaciones.

Características de la nitruración

  • Aumenta el volumen de la pieza.
  • Se emplean vapores de amoniaco.
  • Es un tratamiento muy lento.
  • Las piezas no requieren ningún otro tratamiento.
  • Endurece la superficie de la pieza.

Aceros de nitruración

No todos los aceros son aptos para nitrurar. Resulta conveniente que en la composición de la aleación haya una cierta cantidad de aluminio 1%. También es aplicable a los aceros inoxidables, aceros al cromo níquel y ciertas fundiciones al aluminio o al cromo.

Nitruración (N)

La nitruración consiste en enriquecer la superficie de la pieza en nitrógeno calentándola en una atmósfera especifica a temperatura comprendida entre 500 y 580 ºC, formándose una capa de muy poca profundidad pero de dureza muy superior a la capa de cementado. Durante el proceso no hay deformaciones y obtenemos una mayor resistencia a la corrosión.
Si en un recinto, un horno de tratamiento térmico, se somete al amoníaco (NH3) a temperaturas de 500° C, se descompone en nitrógeno e hidrógeno. El hidrógeno, más ligero, se separa del nitrógeno por diferencia de densidad. El nitrógeno liberado por la descomposición del amoníaco forma la atmósfera en el interior del horno que, en contacto con la superficie de hierro y a esa temperatura, forma nitruro de hierro, un compuesto de gran dureza pero frágil.
Si bien este tratamiento da gran dureza superficial a la pieza, la velocidad de penetración es muy lenta, aproximadamente 1 mm en 100 horas de tratamiento, pero no necesita de temple posterior.La nitruración se da a piezas sometidas a grandes fuerzas de rozamiento y de carga como, por ejemplo, pistas de rodamientos, camisas de cilindros o piezas similares, que necesitan un núcleo con cierta plasticidad, que absorba golpes y vibraciones, y una superficie de gran dureza contra desgaste y deformaciones.

Características de la nitruración

  • Aumenta el volumen de la pieza.
  • Se emplean vapores de amoniaco.
  • Es un tratamiento muy lento.
  • Las piezas no requieren ningún otro tratamiento.
  • Endurece la superficie de la pieza.

Aceros de nitruración

No todos los aceros son aptos para nitrurar. Resulta conveniente que en la composición de la aleación haya una cierta cantidad de aluminio 1%. También es aplicable a los aceros inoxidables, aceros al cromo níquel y ciertas fundiciones al aluminio o al cromo.

Cianuración (C+N)

La cianuración consiste en el endurecimiento superficial de pequeñas piezas de acero. Se utilizan baños con cianurocarbonato y cianato sódico. Se aplican temperaturas entre 760 y 950 °C.

Carbonitruración(C+N)

La carbonitruración al igual que la cianuración, introduce carbono y nitrógeno en una capa superficial, pero con hidrocarburos como metano, etano o propano; amoníaco (NH3) y monóxido de carbono (CO). En el proceso se requieren temperaturas de 650 a 850 °C y es necesario realizar un temple y un revenido posterior.

Sulfinización (S+N+C)

La sulfinización aumenta la resistencia al desgaste por acción del azufre. El azufre se incorpora al metal por calentamiento a baja temperatura (565 °C) en un baño de sales.
Tratamientos termicos posterior a la soldadura (PWHT)
los objetivos del tratamiento termico potsoldeo son:
reducir el nivel de tensiones risuduales que se han podido producir durante el soldeo, caso se suele denminar tratamiento de alivio de tensiones y suele consistir calentamiento y enfriamiento lento
mejorar algunas propiedad o caracterististica de la soldadura o de la ZAt que haya podido quedar afectada durante el soldeo.
pwht
alivio-tensiones-soldadura

Fuentes

  • MALISHEV, A. “Tecnología de los metales”. Séptima Edición; Mir Moscú; 1985.
  • SMITH, W. “Fundamentos de la Ciencia e Ingeniería de Materiales”. Tercera Edición; Mac Graw Hill, 1998.
  • Guliáev, A, P. “Metalografía” Tomo I y II ; Editorial Mir Moscú; 1978.
  • DUFFUS SCOTT, ALEJANDRO. Conferencias de Ciencia de los Materiales y Metalografía de las uniones soldadas. CIS. Facultad de Mecánica. UCLV. 1995.
  • BARINOV, N; LANDA, A. Metalurgia y metalografía - 1 ed -. Editorial MIR.
  •  ANONIMO,. ECURED. 2016-8-12   https://www.ecured.cu/Tratamiento_t%C3%A9rmico_del_metal
  • SOLDADURAS SPARKWELD, SOLDADURAS  2017-14-12 SPARKWELD. https://sparkweld.wordpress.com/2017/02/16/tratamientos-termicos/





Comentarios

Entradas más populares de este blog

aplicación de tratamientos térmicos en los alimentos